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1. Introduction 

In papers [iS4] the state of stress near the tip of a sharp line crack in an elastic plate subjected to 
uniform tension, in-plane shear and anti-plane shear are discussed. The field equations employed in 
the solutions of these problems are those of the theory of the non-local elasticity. The solutions 
gave finite stress at the crack tips, thus resolving a fundamental problem that has remained 
unsolved over half a century. This enabled us to employ the maximum-stress hypothesis to deal 
with fracture problem and the composite materials problem in a natural way. However, they were 
not exact and there is oscillatory stress near the crack tipt’l. The iteration error is also not 
reasonable[‘A1 because the dual integral equation has a super singularity integral kernel. To 
overcome the’ difficulty, the Schmidt methodt51 will be used. Recently, the same problems in the 
papers 11-41 have been resolved in papers ta-‘l by using the Schmidt method and the results are more 
accurate and more reasonable. In papers lg~lol, the problems for a crack or two cracks were 
investigated by using the non-local theory. To the author’s knowledge, analytical treatment of two 
parallel symmetric cracks problem by using the non-local theory has not been attempted. 
For the above-mentioned reasons, the present paper deals with the problem of two parallel 
symmetric cracks in an elastic plate by using the non-local theory. For overcoming the 
mathematical difficulties, one has to accept some assumptions as Nowinskil”~121, one-dimensional 
non-local kernel function is used instead of two-dimensional kernel function for the anti-plane 
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problem to obtain the stress occur at the crack tips. Certainly, the assumption should be further 
investigated to satisfy the realistic condition. The Fourier transform is applied and a mixed 
boundary value 
Schmidt P 

roblem is formulated. Then a set of dual integral equations is solved with the 
method ‘1. In solving the equations, the gaps of the displacement along the crack surface 

are expanded in a series of Jacobi polynomials. This process is quite different from that adopted 
in Eringen’s works “v41 The solution as expected, does not contain the stress singularity near the 
crack tips. The stress field along the’crack line depends not only on the crack length, the distance 
between two parallel cracks, but also on the lattice parameter. 

2. Basic Equations of Non-local Elasticity 

Basic equations of linear, homogeneous, isotropic, non-local elastic solids, with vanishing body 

force are 

r -0, kl.k - Tkl = I, dJX’ - qo, (Xl) N(X) (1) 

(T,I (x’) = hr,r (x’)6sj + A”i,j (x’) + ‘j,n Cx’)l (2) 

where the only difference from classical elasticity is in the stress constitutive equations (1) in 

which the stress rk, (X) at a point X depends on the strains e, (Xl), at all points of the body. 

For homogeneous and isotropic solids there exist only two material constants, h and u are the 

Lame constants of classical elasticity. a&X’-Xl) IS k nown as influence fimction, and is the 

function of the distance IX-XI The expression (2) is the classical Hook’s law. Substitution of 

equation (2) into equation (1) and using Green-Gauss theorem, it can be obtained: 

I, a(lx’-xl)[(n + &k,k, (x’) + p,,kk (xo)kiv(x’) - I, a(lx’-x(tik, (xo)dak cx’ ) = ’ c3) 

Here the surface integral may be dropped if the only surface of the body is at infinity. 

3. The Crack Model 

It is assumed that there are two parallel symmetric cracks of length 21 in an elastic plate as shown 

in Fig. 1. h is the distance between the two cracks. As discussed in [l-4], when the crack is 

subjected to the anti-plane shear stress rO, the boundary conditions on the crack faces at y=O are: 

w”‘(x,h) = wc2’(x,h), z;)(x,h) = z;‘(x,h), 1x1 >I (4) 

wr2’(x,o) = w@)(x,O), tg’(x,O) = 7:)(x,0), 1x1 > 1 (5) 

zjl)(x, h) = z;‘(x, h) = -z, , z$‘(x,O) = zsj’(x,O) = -To (XI I1 (6) 
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w”‘(X,y) = lP(x,y) = w(‘)(x,y) = 0 ,(x2 +y2y2 + 00 (7) 

Note that all quantities with superscript k (k-l, 2,3) refer to the upper half plane 1, the layer 2 and 

the lower half plane 3 as in figure 1, respectively. 
Y 

1 

hl 
2 

Fig. 1, Two parallel symmetric cracks in the plane 

4. The Dual Integral Equations and the Solution 

According to the boundary conditions, the equation (3) can be written as follow: 

-Ifla(~x’-rl,O) 1 a,(x’,O) 1 uk’ -&x’-xl,@ c a,(x’,h) 1 (6c’ = 0 

where 1 u‘p (x, y) 1 = op (x , y’ ) - cr, (x , y- ) are a jump across the crack. 

From the workst2’ 4’, it can be obtained: 

c a&,0) 1 = c q&J) 1 =o for all x 

Define the Fourier transform by the equations 

(8) 

(9) 

f(s) = 

For solving 

follows: 

a 

the problem, the Fourier transform of equation (8) with respect x can be given as 

BL.ii()sl,lY’-Yl)[(-s2)~+~= 0 

(10) 

From (1 l), we can derive 

d*w --&i=o 
+’ 

whose solutions do not present difficulties, we have 

W(I) (s, y) = A, (s)e-” , ( y 2 h) 

(11) 

(12) 

(13) 
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ii+) (s, y) = A, (s)e-” + B, (s)e” , (h 2 y 2 0 ) (14) 

W”‘(s,y) = AJ(s) (y IO) (15) 

where A,(s), A,W, B,( > s and A,(s) are to be determined from the boundary conditions, 

The stress field, according to (l-2) is given by: 

(16) 

What now remains is to solve the function w by using the equation (16) and the boundary 

conditions. It seems obvious that a rigorous solution of such a problem encounters serious if not 

unsurmountable mathematical difficulties, and one has to resort to an approximate procedure. In 

” the given problem, according to the assumptions of Nowinski s “‘-i2’, the non-local interaction in 

y direction can be ignored. In view of our assumptions, it can be given 

+‘-xl, IY’-Yl) = a, (Jx’-#(Y’-Y) (17) 

As discussed in [4, 11, 121, it was taken 

a0 = x0 exp(-(P/)‘(x’-x)‘), with x0 =&PA (18) 

where j3 is a constant (here p = e, & / I, e, is a constant appropriate to each material), a is the 

lattice parameter. So it can be obtained 

E,(s) = exp(-Q&) (19) 

C,(s) = 1 for the limit a -+ 0, so that the equation (16) reverts to the well-known equation of 

the classical theory. So from the equation (16), we have 

rz>(~,h) = -%IR,,(-$exp(-s/r)&, (S)COS(SX)C& 

rz)(x,O) = -$cexp(-$-)s[A,(s) - B,(s)]cos(sx)& 

(20) 

(21) 
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q(x,o) = ~~exp(-~sA3(s)cos(sx)ds (22) 

For solving the problem, the gap functions of the crack surface displacements is defined as 

follows: 

f,(X)=W(‘)(X,h+)-W(z)(X,h-), f,(X)=W(2)(x,O+)-W(3)(X,O~) (23) 

Substituting equations (14-15) into equations (23) and applying the Fourier transform, it can be 

obtained 

s, (s) = [A, (s) - A, (.~)]e-“~ - B, (~)e”~, 7, (s) = A,(s) + B,(s) - A, (s) (24) 

Substituting equations (20-22) into equations (4-6) it can be obtained 

[A, (s) - A2(s)]e-2sh = -B,(s) , A,(s) - B,(s) = -A,(s) (25) 

By solving four equations (24-25) with four unknown hmctions A,(s), A,(s) , B,(s) and 

A,(s) and applying the boundary conditions (4-6) it can be obtained: 

r D +exp(-!iY 4p2 )s[f, (s) + exp(-sh)f, (s)]cos(sx)ds = z ,’ 1X ( 2 1 

r o iexp(-uIJ1 )s[exp(-sh)f, 4p2 (s) + 7, (s)]cos(sx)ds = 2 , IX ( 2 1 

$A (s)cos(sx)ds = 0 ) [.r, (s)cos(sx)ds = 0 ) In) > 1 

From the (26-28) it can be obtained 

.?I (s) = 72 (s) = s, (4 = f2 (4 1 r;;(x,h) = zp(x,h) = s;‘(x,o) = z;‘(x,o) = zy2 

(26) 

(27) 

(28) 

(29) 

Here we just solve the dual integral equation (26) and (28). Since the only difference between the 

classical and the non-local equations is in the introduction of the function exp(-a ’ -$), it is 

logical to utilize the classical solution to convert the system (26-28) to an integral equation of the 

second kind which is generally better behaved. For 4 = 0, then the equations (26-28) reduce to 

the dual integral equations for same problem in classical elasticity. To determine the unknown 

functions f,(s) and s,(.s) , the dual-integral equations (26-28) must be solved. The dual 

integral equations can be considered to be a single integral equation of the first kind with a 

discontinuous kernel”‘. It is well-known in the literature that integral equations of the first kind 

are generally ill-posed in sense of Hadamard, i.e. small perturbations of the data can yield 

arbitrarily large changes in the solution. This makes the numerical solution of such equations 
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quite difficult. In this paper, the Schmidt method was used to overcome the difficulty. The gap 

functions of the crack surface displacement are be represented by the following series: 

s,(x) = f*(x) = ~a,P$~)(;)(l-$,i, for-l<x<l,y=O 
“=, 

where an is unknown coefficients to be determined and P,, ‘x’x’(x) is a Jacobi polynomial”31. 

The Fourier transformation of equation (30) are: 

fi (3) = $ anG, fJ*_i (~1)) G, = 2&(-l)"-' 
r(2n - ;, 

(2n - 2)! 
(31) 

where T(x) and J,(x) are the Gamma and Bessel functions, respectively. 

Substituting equation (31) into equations (26-28) respectively, the equations (28) has been 

automatically satisfied, the equation (26) reduces to the form for -I < x < I (the equation (27) 

can be solved similar as equation (26)) 

(32) 

For a large s, the integrands of the equation (32) are almost decreases exponentially. So they can 

be evaluated numerically by Filon’s methodl’4’ Equation (32) can now be solved for the 

coefficients a,, by the Schmidt method151. For brevity, the equation (32) can be rewritten as 

ganEn(x) = U(x),-Z < x < 1 (33) 
II=, 

where En(x) and U(x) are known functions and the coefficients an are to be determined. A 

set of functions P,(x) which satisfy the orthogonality condition 

5 I, p, (xX (x)A = N,8,, > N, = I;, P,’ (x)dx (39) 

can be constructed from the fimction, E,,(x) , such that 

(34) 

where A4, is the cofactor of the element d,, of 4, which is defined as 
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d,,,d,,,d,,,...,d,, 

d,,,d,,,d,,,...,d,, 
D = d,,,d,,>d,,>...>d,, 

” 

. . 

d,,,d,,>dn,,...xdnn 

Using equations (32-35), we obtain 

(35) 

(36) 

5. Numerical Calculations and Discussion 

From the work$‘, *, 9, ‘“,‘51, it can be seen that the Schmidt method is performed satisfactorily if 

the first ten terms of infinite series to equation (32) are retained. The behavior of the maximum 

stress stays steady with the increasing number in terms in (32). Although we can determine the 

entire the stress field from the coefficients an, it is important in fracture mechanics to determine 

the stress z, in the vicinity of the crack tips. z, along the crack line can be expressed 

respectively as 

z 
YZ 

= -~~~~G.B[exp(-sh)+I]exp(-~~*~_,(sl)cos(sx)ds (37) 

For a=0 at x=1, we have the classical stress singularity. However, so long as a f 0, the 

semi-infinite integration and the series in the equation (37) are convergent for any variable x. The 

equation (37) gave a finite stress all along y = 0, so there is no stress singularity at the crack tips 

At -I < x < 1, z, Jr, is very close to unity, and for x > I, zYr Jr, possesses finite values 

diminishing from a maximum value at x = I to zero at x = 00. The semi-infinite numerical 

integrals, which occur, are evaluated easily by Filon and Simpson methods because the rapid 

diminution of the integrands. The results are plotted in Figs.2 to7. The following observations can 

be made: 

(I), The maximum stress does not occur at the crack tip, but slightly away from it. This 

phenomenon has been thoroughly substantiated by Eringen [I61 The maximum stress is finite. The 

distance between the crack tip and the maximum stress point is very small. This distance depends 

on the lattice parameter, the crack length and the distance between cracks. Contrary to the 



1 z !.! Z -G ZHOU. 3 -1. SL;N and B. WANG 

classical elasticity solution, it is found that no stress singularity is present at the crack tip, and 

also the present results converge to the classical ones for positions when far away from the crack 

tip as shown in Fig 4 to Fig 7. (II): The anti-plane shear stress at the crack tip becomes infinite as 

the atomic distance a-+0. This is the classical continuum limit of square root singularity. (III): 

For the alp = constant, viz., the atomic distance does not change, the value of the stress 

concentrations (at the crack tip) increase higher with the increase of the crack length. Noting this 

fact, experiments indicate that materials with smaller cracks are more resistant to fracture than 

those with larger cracks. (IV): The stress at the crack tip increases when the distance between 

cracks increases as shown in Fig 2. This phenomenon is called crack shielding effect However, 

the stress at the crack tip increases when the length of the crack increase. (V): The stress at the 

crack tip increases when the lattice parameter decreases 
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Fig 3. The stress at the crack tip versns I for Fig 2. The stress at the crack tip versus h for 
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Fig 5. The stress along the crack line versus 
x for h=0.3, I=l.O, d2~=0.001 
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Fig 4. The stress along the crack line versus 

x for h=0.3, I=1 .O, a/2p=O.O005 
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Fig 6. The stress along the crack line versus 

x for h=0.3, /=l.O, a/2/3=0.008 
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